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Among the various practical uses of underground explosions, one of the most important 
is the use of such explosions to alter the permeability and porosity of the medium in the 
vicinity of the explosion. In light of this, it is necessary to theoretically calculate the 
residual porosity of the medium after an underground explosion has taken place. We are in- 
terested both in the spatial distribution of residual porosity and in the total volume of 
the pores created by the explosion. 

It is possible to distinguish three main reasons for the change in the porosity of a 
medium after an explosion: i) consolidation of the medium at the front of the shock wave; 2) 
loosening (or compaction) of the fragmented medium during its motion (dilatation effect); 3) 
deformation under the influence of the residual stress field. Also, new porosity develops 
in the region where radial cracks are located, due to the opening of these cracks. The goal 
of the present study is to analyze residual porosity in the fracture zone, where the above 
three mechanisms predominate. 

Residual porosity was calculated theoretically in [i, 2] with the assumption of constant 
compaction at the front, a constant dilatation rate, and negligible elastic strains. Here, 
we analyze changes in porosity due to an explosion in different media. 

i. We will examine a model of deformation of a granular, cemented medium saturated with 
moisture or gas. It is assumed that the initial medium consists of hard granules which are 
cemented together, ~ with the intervening pore spaces being filled by fluid (gas, liquid). As 
an internal parameter of the model, we introduce structural porosity m 0 - the porosity of the 
medium without a load. The elastic strains are clearly nonlinear in character, due to the 
contact interaction of the grains (Hertz problem). The dependence of the running porosity 
m on the structure porosity m 0 is taken in the form 

= ~ o / ( i  + c > ) ,  ~" = (p~ - pf)JK~,~ ( 1 . 1  ) 

where K s is the compressive bulk modulus of the solid phase; Ps and pf are the pressures in 
the solid phase and the fluid. We can use Eq. (i.i) to obtain an equation for the volumetric 
deformation s d of an unsaturated brittle medium 

~ ~ P__~. ( 1 . 2 )  %~" t + ~ "  ( t -  me)p, P=x~ 
--% = ~+$,~_,% + t + & " - m  o 

The constant c = 50 was determined from an analysis of the experimental curves ~d(P) for dry 
rocks with different initial porosities (0 < m 0 < 35%) [3]. The nonlinearity index n = 2/3 
follows from the solution of the Hertz problem [4]. 

In the region of elastic deformation, the stress changes are connected with the strain 
rates by Hooke's law for a saturated nonlinearly elastic brittle medium: 

at--= Y7- -7" '  7 f= - -K(Rt rno  ) ~"r + 2 (1.3)  

(d/dt = a/at + ua/ar). With allowance for contact compressibility, the compressive bulk 
modulus K and the shear modulus G have the form 

K (p, rao) = Ks , 
m o (l  - -  me) , ,5 ,~-1  t+  (1_,%+ 5,92 
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G 'no) = Gs 
~m o (i -- too)n~ ~-~ G s ( i. 4) 

Here, I/~ ---- 3(| -- 2v0)/[2(I ~- v0)]; ~0----w(p, m0)[~ ~ is the Poisson's ratio. 

The fractured brittle material in the medium undergoes plastic strains if the plastic 
flow condition is satisfied. For the spherically symmetric case, we will take this condi- 
tion in the von Mises-Huber-Schliecher form, with allowance for Tertsagi's law: 

2 
= (A) (p-- p f) �9 i = + r, (1.s) 

where p - pf = (i - m)(Ps - pf); ~(A) is the friction coefficient. It depends on the dilata- 
tion rate A and was obtained in [5]. The quantity Y represents adhesion. 

The plastic flow is accompanied by an irreversible change in the volume (restructuring) 
of the fractured brittle medium - the dilatation effect. This effect is determined by the 
change in structural porosity m0: 

din~ --  ( t  7" too) A (Pet, ' I dt Or r dt . ---- 6 (7, too) ~ �9 (1.6)  

For an unsaturated, low-poros i ty  medium at  low pressures, Eq. (1.6)  becomes the f a m i l i a r  
dilatation equation for a slightly compressible dilating medium [6]. The expression for 
dilatation rate A(Pef, m) is taken in a form similar to [7]: 

A (P,h m) = A o (m ,  (Pel) - - m ) / ( t  - -  m) ( 1 .7  ) 

(m,(Pe f) is the critical porosity. The expression for critical porosity was presented in 
[7]). 

The total pressure p and density p are connected with the densities and pressures in 
the components by the relations 

p = p s ( l  - -  m) -l- p f m ,  p = ps(i -- m) + pfm.  ( 1 . 8 )  

The equations of state of each phase are written in the form 

] PS -- ~ [ \ ~sil -- I for solid components, 

for liquids. (1.9)  
p~=- w~"L\F~i / 

[%V 
pg = l~gil Pgi7 fo r  gases. 

Here, Psi, Ps and PRi are the initial densities of the components; c s and cs are the speeds 
of sound in the solid-phase and the liquid; 7s, Ys and 7 are the adiabatic exponents of the 
solid, liquid, and gas. 

As the closing equation, it is neces~sary to write a condition which determines the char- 
acter of filtration of the fluid through the solid component. If we ignore filtration during 
the explosion, then we should have a constant value ~ 

mpf,1 [(i -- m)ps] = const~ ( 1 . 1 0 )  

w h i c h  c h a r a c t e r i z e s  t h e  r a t i o  o f  t h e  m a s s  o f  t h e  f l u i d  t o  t h e  m a s s  o f  t h e  s o l i d  i n  a u n i t  
v o l u m e .  

I n  c a l c u l a t i o n s  o f  an  u n d e r g r o u n d  e x p l o s i o n  i n  [ 7 ] ,  t h e  c h o s e n  s o u r c e  o f  e x p l o s i o n -  
i n d u c e d  m o t i o n  was  a c a v i t y  w i t h  an  i n i t i a l  r a d i u s  a 0 f i l l e d  w i t h  e x p l o s i v e  g a s e s .  The  p r e s -  
s u r e  in the cavity changes in accordance with the adiabatic law 

p(a) = po(ao/a)3~,, ( 1 . 1 1  ) 

where P0 is the initial pressure of the gases in the cavity; p(a) is the running pressure; a 
is the running radius of the explosion cavity; y is the adiabatic exponent of the explosive 
gases. The background pressure in the medium is equal to p=. The behavior of the brittle 
medium during the explosion is described by the equations of motion 
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p(Ou/Ot A- uOu/Or) = Oar~Or + 2(at --  %)/r ( 1 . 1 2 )  

and c o n t i n u i t y  

0 - - / - + u ~ + p  ~Tr + 2  = 0 .  ( 1 . 1 3 )  

Here ,  u i s  t h e  mass v e l o c i t y  o f  t h e  medium; 0 i s  d e n s i t y ;  r i s  t h e  E u l e r i a n  c o o r d i n a t e ;  ~r 
and ~ a r e  t h e  r a d i a l  and a z i m u t h a l  components  o f  t h e  s t r e s s  t e n s o r .  

To p e r f o r m  n u m e r i c a l  c a l c u l a t i o n s ,  s y s t e m  ( 1 . 1 ) - ( 1 . 1 3 )  was w r i t t e n  in  f i n i t e - d i f f e r e n c e  
form,  s i m i l a r  t o  [ 8 ] .  We t o o k  t h e  f o l l o w i n g  v a l u e s  f o r  t h e  p a r a m e t e r s  in  t h e  c a l c u l a t i o n :  
K s = 52 GPa, n = 0 . 6 7 ,  c = 50,  G s = 24 GPa, v0 = 0 . 2 4 ,  Y = 150 Pa,  A0 = 0 . 5 ,  Ps i  = 2 . 6 5 . g /  
cma, Ps = 1 g/em a, Pgi  = 0 .0012  g/em a, c s = 4500 m / s e e ,  cs = 1600 m / s e e ,  7~ = 6 . 3 ,  X = 1 . 4 ,  
Xs = 7, p~ = 20 MPa, P0 = 70 GPa. 

The r e s u l t s  o f  n u m e r i c a l  c a l c u l a t i o n  o f  t h e  r e s i d u a l  change  in  t h e  r u n n i n g  v a l u e  ~m o f  
p o r o s i t y  as  a f u n c t i o n  o f  d i s t a n c e  a r e  shown in  F i g .  1 ( g a s - s a t u r a t e d  medium) and F i g .  2 
( w a t e r - s a t u r a t e d  medium);  W i s  t h e  e n e r g y  o f  t h e  e x p l o s i o n .  Curves  1-3 in  F i g .  1 c o r r e s p o n d  
t o  a g a s - s a t u r a t e d  medium w i t h  m 0 = 5, 15, and 35%, w h i l e  c u r v e s  1 and 2 in  F i g .  2 c o r r e s p o n d  
t o  a w a t e r - s a t u r a t e d  medium w i t h  m0 = 5 and 35%. I t  i s  e v i d e n t  t h a t  t h r e e  t y p e s  o f  r e s i d u a l  
v o l u m e t r i c  s t r a i n s  a re  p o s s i b l e  in  t h e  v i c i n i t y  o f  t h e  e x p l o s i o n  c a v i t y  a f t e r  an u n d e r g r o u n d  
e x p l o s i o n  in  a s a t u r a t e d ,  b r i t t l e - f r a c t u r e  medium: r e s i d u a l  l o o s e n i n g  ( c u r v e s  1 in  F i g s .  1 
and 2 ) ;  r e s i d u a l  c o n s o l i d a t i o n  ( c u r v e  3 in  F i g .  1, c u r v e  2 in  F i g .  2 ) ;  a nonmono ton i c  r e l a -  
t i o n  ( l o o s e n i n g  n e a r  t h e  c a v i t y ,  w i t h  s u b s e q u e n t  c o n s o l i d a t i o n  g o i n g  away f rom t h e  c a v i t y  - 
c u r v e  2 in  F i g .  1 ) .  R e s i d u a l  l o o s e n i n g  (0 < m 0 < 15%), nonmono ton i e  b e h a v i o r  (15% ~ m  0 < 
30%), and r e s i d u a l  c o n s o l i d a t i o n  (m 0 > 30%) a r e  s e e n  in  t h e  g a s - s a t u r a t e d  medium. In  t h e  
w a t e r - s a t u r a t e d  medium, r e s i d u a l  l o o s e n i n g  i s  s een  up t o  m 0 ~ 25%. The p a t h  o f  p o r o s i t y  i s  
s l i g h t l y  n o n m o n o t o n i c  a t  25% < m 0 s 30%, w h i l e  r e s i d u a l  c o n s o l i d a t i o n  - c l e a r l y  seen  f rom 
t h e  n u m e r i c a l  e s t i m a t e s  - b e g i n s  w i t h  m 0 ) 35%. 

I t  s h o u l d  be n o t e d  t h a t  t h e  g i v e n  model  i s  most  s u i t e d  f o r  i d e a l l y  b r i t t l e  med ia ,  in  
which  t h e  change  in  p o r o s i t y  i s  c o n n e c t e d  m a i n l y  w i t h  t h e  r e a r r a n g e m e n t  o f  lumps o f  f r a c -  
t u r e d  r o c k  and w i t h  t h e  r e s i d u a l  s t r e s s  f i e l d .  Here ,  no c o n s i d e r a t i o n i s  g i v e n  t o  t h e  p o s -  
s i b i l i t y  o f  i r r e v e r s i b l e  s t r a i n s  c o n n e c t e d  w i t h  t h e  p o t e n t i a l  f l ow o f  m a t e r i a l  i n t o  p o r e s  
unde r  t h e  i n f l u e n c e o f  h i g h  p r e s s u r e s  in  t h e  shock  f r o n t .  

2. To d e t e r m i n e  t h e  r o l e  p l a y e d  by i r r e v e r s i b l e  c o n s o l i d a t i o n  a t  t h e  f r o n t  in  t e rms  o f  
t h e  e f f e c t  o f  s u c h  c o n s o l i d a t i o n  on r e s i d u a l  p o r o s i t y ,  we w i l l  examine a model  o f  a medium 
in  which  c o n s o l i d a t i o n  a t  t h e  f r o n t  d e c r e a s e s  w i t h  d i s t a n c e  f rom t h e  c e n t e r  o f  t h e  e x p l o s i o n ,  
w h i l e  t h e  s t r a i n s  o f  t h e  medium b e h i n d  t h e  f r o n t  a r e  c h a r a c t e r i z e d  by a c o n s t a n t  d i l a t a t i o n  
r a t e  A [ 9 ] .  

Following [9], we assume that the source of motion of the medium is a gas located in a 
cavity with an initial radius a 0. At t > 0, a spherical shock wave begins to propagate from 
the cavity. At the front of the shock, the medium is instantaneously compacted as a result 
of collapse of pores. The degree of compression of the medium at the front will be character- 
ized by the consolidation e(R) = 1 - p0/p(R), where R is the radius of the shock-wave front 
and p(R)is the density attained at the front. A similar law of change in consolidation was 
used in [i0]. It is assumed that the medium undergoes fracture immediately after consolida- 
tion. Behind the shock front - which coincides with the front of the fracture wave - the 
medium undergoes plastic flow accompanied by a density change, due to the dilatation effect 
[i, 2]. Here, no allowance is made for the compressibility of the lumps of fractured medium. 
The medium is described by equations of motion and continuity and the dilatation equation, 
similar to [6]. The dilatation rate A is assumed to be constant. It is also assumed that 
the Prandtl plasticity condition ~--~ = k ~ ml( ~ ~ 2a~)is satisfied behind the wave front 
(k and m I are the adhesion and friction coefficients). With allowance for the laws of con- 
servation at the shock front and the adiabatic nature of expansion of the explosive gases in 
the cavity for the relation e(R) = e0(a0/R) ~ (%>0), we have an equation for the medium which, 
when solved, can give us a complete description of the motion of the medium within the frame- 
work of the following assumptions: 

d_y _~ N (x) y = M (x). ( 2 . 1 )  
dx 

" "" t dg. 
Here, y = x2; x =  2 dx' 
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o* is the crushing strength of the medium; r(r 0) is the dependence of the Eulerian coordinate 

Or _ _ i  (r~ 1 
on the Lagrangian coordinate, which is found from the equation ~--p ~ r]' p(r)---- i_%r~ x 

~-] ; r and r 0 are expressed in the units of a0, while p is expressed in the units of P0; 

the dot denotes differentiation with respect to the dimensionless time T = t~0/p0a0 �9 The 
initial condition for (2.1) has the form y(x = i) = E 0. The solution of the equation of the 
medium gives the time dependence of the radius of the explosion cavity and is unambiguously 
connected with it by the law of mass conservation for the radius of the fracture-wave front. 
Ignoring oscillations of the walls of the cavity about their final position, we will assume 
that the maximum values of the radii of the cavity and the fracture-wave front are also the 
final values of these quantities. 

Now let us proceed to the derivation of formulas that will allow us to calculate the 
volume of the pore space using very general assumptions on the behavior of the medium and its 
parameters. We assume that the explosion-induced motion of the medium is described by the 
model presented above. As already noted, the irreversible compaction of the medium is con- 
nected with the partial collapse of pores at the shock front. The residual porosity of the 
blocks into which the medium has fractured will not change in the subsequent flow behind the 
front. We will henceforth refer to this porosity as the intra-block porosity, and we will 
refer to the porosity which results from the dilatation effect as the dilatational porosity. 
At an arbitrary moment of time, the total volume of the pores which comprise the intra-block 

and dilatational porosities is equal to V = Sm(r,: t)dV [m(r, t) is the total porosity of the 
medium at point r at the moment of time t]. The integral is taken over the entire volume 
of the medium involved in motion. The expression for m has the form m(r, t) = I - (i - m u) x 
p(r, t)/p 0 (m u is the porosity of the undisturbed medium). 

Then, with allowance for the sphericity of the motion, we find that 
R 

Integration of (2.2) with allowance for the mass conservation law leads to the expression 

4n 4n (1 - -  ma) ( R  3 - -  a~) ,  Y = "-a- ( R8 - -  aD - -  T 

We divide both sides of (2.3) by the initial volume of the explosion cavity V o. 
dimensionless form, we obtain 

Then, 

(2.3) 

in 
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= m u ( R  a - -  i )  - -  a 3 + ' ,  V = VIVo, a =  alao, 7 ~ =  R/ao. ( 2 . 4 )  

Equation (2.4) makes it possible to calculate the total volume of pores in the medium at any 
moment of time, including the moment when the cavity stops moving. It should be noted that 
the function V was obtained with an arbitrary law for consolidation of the medium at the 
shock front, and it does not explicitly contain the dilatation rate. 

Having determined mu, am, and R m from experiment (a m and R m are the maximum dimensions 
of the cavity and the fracture zone), by using (2.4) we can easily find the total volume of 
pores in the medium after an underground explosion. 

Now let us calculate the volumes of the pores associated separately with intra-block 
and dilatational porosity. For the volume associated with intra-block porosity, we have 

V~ = ~ J [~u-- ~ (to)] 
a o 

[e(r 0) is the consolidation of the medium at the front at the Lagrangian point r0]. With the 
power relation e(r0) Nr~ ~, we obtain the following for the dimensionless total volume of the 
intra-block pores 

(2.5) 

The total volume of inter-block cavities is obtained by integrating the expression for dila- 
_[% ]~-n 

tational porosity m d(~t ) = i L ~  j over the volume of the fractured medium. Finally, 

~= 3% (~'-~--i) ia+l (~=3). (2.6) 
3_~ 

It is easy to see that the sum of (2.5) and (2.6) leads to Eq. (2.4). Thus, Eqs. (2.4)-(2.6) 
make it possible to determine both the total volume of pores and the volumes connected with 
intra-block and dilatational porosity, respectively. Meanwhile, to determine the total vol- 
ume of pores, it is necessary to determine only mu, R, and a experimentally. The parameter 

can be found from data on the shock compressibility of the medium, knowing the law by which 
the peak stresses at the front of the fracture wave decay over the radius. 

Figures 3 and 4 show the results of calculations with Eqs. (2.5) and (2.6), where mu = 
6%, ml = 0.2, k = 20 MPa, e0 = 0.06, o* = 30 MPa, A = 0.07. The dimensions of the cavity 
and the fracture zone were obtained from the solution of the equation of the medium (2.1). 
Figure 3 shows the dependence of the total volume of the residual intra-block and inter- 
block pores on the dilatation rate A (lines 1 and 2). As is known, an increase in dilatation 
rate leads to an increase in the degre of loosening of the medium in the fracture zone and, 
thus, to an increase in the total volume of the dilatational pores. Displacement of the 
medium from the region in which dilatational loosening takes place causes an increase in the 
radius of the fracture zone and a decrease in the final radius of the cavity (see [11, 12]). 
In accordance with Eq. (2.5) for the total volume of intra-block pores, this leads to an 
increase in the latter - as is confirmed by the path of curve 1 in Fig. 3. 

Figure 4 shows the dependence of the volumes of dilatational and intra-block cavities 
on the consolidation index X (the notation is the same as in Fig. 3). The increase in V b with 
X has a trivial explanation: the more rapid the decrease in the consolidation of the medium 
at the front, the higher the value of residual porosity of the blocks into which the medium 
fractures. There is also an increase in the dimensions of the fracture zone [ii], so that 
an increase in the consolidation index X leads to a sharp increase in the total volume of 
the residual intra-block pores. The relation Vd(X ) is more complicated. As noted above, an 
increase in X is accompanied by a decrease in the radius of the explosion cavity and an in- 
crease in the size of the fracture zone. Thus, expansion of the region affected by the ex- 
plosion leads to an increase in the volume subjected to dilatationai loosening. On the other 
hand, with a reduction in the compression of the medium at the wave front, there is a reduc- 
tion in the amount of material displaced as a result of pore collapse. The reduction in the 
displacement of the medium and the associated reduction in shear strain decrease the amount 
of dilatational loosening which occurs. The competition among these effects leads to the 
nonmonotonic relation Vd(X ) shown in Fig. 4. 
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3. To determine the residual porosity of a plastically deformed medium, we can use the 
method in [13] to perform numerical calculations. The authors of [13] used the model equa- 
tion state in [14] (similar to the equation proposed in [15]) to describe the behavior of the 
porous medium. In accordance with this equation, the behavior of a porous medium with volu- 
metric strains is irreversible in character. The degree of irreversible compaction depends 
appreciably on the type of substance saturating the pores - gas or liquid. In the first 
case, porosity decreases to almost zero during fracture and pore compression. In the case 
of saturation by a liquid, there is little change in porosity, due to the low degree of com- 
pressibility of the liquid. Intermediate cases will exist for a combination gas-liquid 
medium. 

Figure 5 shows the results of numerical calculations of the dependence of residual po- 
rosity on distance. Curve 1 corresponds to a gas-saturated medium with an initial porosity 
of 5%, curve 2 corresponds to a water-saturated medium with the same initial porosity, and 
curve 3 corresponds to a combination gas-water-saturated medium with an initial porosity 
of 15% - 5% for the gas phase and 10% for the liquid phase. The dashed lines show the back- 
ground porosity. The curves confirm the above-described features of irreversible volumetric 
deformation of a porous medium. It should be noted that, in the case of a medium with gas, 
the dimensions of the regions where gas porosity is completely and partially eliminated are 
roughly the same. 

One important mechanical effect of an underground explosion is the formation of a zone 
of brittle radial cracks [16]. The formation of such a zone in monolithic rock was con- 
sidered in the numerical calculations, and the total volume of cavities in this zone was 
determined. The formation of a zone of radial cracks was accounted for in accordance with 
the following scheme. When the azimuthal radial stresses in a Lagrangian particle of the 
medium exceed the cohesive strength a 0, a brittle radial crack having the same size as the 
particle is formed; in the particle itself, there is a sudden change in density, the stresses 
a r and a~, and pressure. These sudden changes are easily calculated from the condition of 
continuity of the radial component of the strain tensor: [09 ] =--a0, [~] =--2~, [T] = (I-- 
2v)~0, [p] = (I +~)~02/3,[V] =--(i ~-~)Va~/K. Here, the symbol [ ] denotes a sudden change in 
a quantity, i.e., the difference between the new and old (prior to fracture) values of the 
corresponding quantity. 

With the formation of cracks as a result of stress relief, a certain volume of cavities 
T(t) is created. This volume can be identified with the volume of the cracks and calculated 

I( V~,~ from the formula T(t) = 4~ 1--~--)r dr, where V s is the specific volume of the solid phase be- 

tween the cracks and V is the total specific volume of the medium with cracks. The integral 
is taken over the region in which cracks are present ~. 

Figure 6 shows the relation T(t) for different cases of background pressure pm in a 
medium and the cohesive strength. Curves 1-3 corespond to p~ = 2, 5, and 2 MPa and go = 3, 
3, and 5 MPa, respectively. The other parameters of the medium had-the following values: 
K = 54 GPa, Po = 2.7 g/cm 3, 9 = 0.33. As the numerical calculations showed, the volume 
of the pores created is quite large and is comparable in terms of dynamics with the final 
volume of the explosion cavity (the dashed line in Fig. 6). However, as a result of the 
reverse motion of the medium in the vicinity of the cavity, the radial cracks may be par- 
tially or completely closed and their total volume may decrease by nearly one order of mag- 
nitude - it may even reach zero (curve 2). 
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